Controlled fabrication, lasing behavior and excitonic recombination dynamics in single crystal CH$_3$NH$_3$PbBr$_3$ perovskite cuboids

Fangtao Lia,b,1, Junfeng Lub,c,1, Qinglin Zhangd,1, Dengfeng Penge, Zheng Yangb,c, Qian Xub,c, Caofeng Panb,c,d,*, Anlian Pand,*, Tianfeng Lif,*, Rongming Wanga,*

aBeijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
bCAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
cSchool of NanoScience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
dCAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
eCollege of Optical-Electronic Engineering, Shenzhen University, Shenzhen 518060, China
fCollege of Optoelectronic Engineering, Hunan University, Changsha 410082, China

Keywords:
Lead halide perovskite
Solvothermal method
Single crystal cuboid
Lasing
TRPL

1. Introduction

Organic-inorganic lead halide perovskites, particularly MAPbX$_3$ (M = CH$_3$NH$_3$, X = Cl, Br, I), have given great attention for their excellent optoelectronic properties such as strong absorption coefficients, easily tunable bandgap, high carrier mobility, small exciton binding energy and unique defect properties [1–5]. These characteristics have boosted rapid progress in solar cell efficiency, quantum yield and tunable wavelength, lead halide perovskites have been devoted to develop high-performance perovskite nanolaser [16–18], nanowires [12,19], quantum dots [20–22], and large single-crystal bulks for the applications in various fields [23,24]. Since Deschler et al. [25] first accomplished the trihalide perovskite laser by constructing a surface-emitting vertical Fabry-Pérot cavity consisting distributed Bragg reflector (DBR) mirrors, a lot of novel perovskite lasers made by thick films and large-dimension single crystals have been reported [25–29]. Compared with the polycrystalline films, single crystal possesses much lower defect density and much less grain boundaries, which will lead to superior optoelectronic performances. After the first single crystal perovskite nanolaser was realized by Xiong’s group, a lot of research efforts have been devoted to develop high-performance perovskite nanolaser [18,30–32]. Zhu et al. [12] prepared the single crystal MAPbX$_3$ (X = Cl, Br, I) perovskite nanowires by solution process, and obtained high-performance Fabry-Pérot mode perovskite laser with lasing thresholds as low as ~220 nJ/cm2 and high quality factor of 3,600. And then, Zhao et al. [33] controllably fabricated MAPbBr$_3$ perovskite microwires and microplates by selectively binding two surfactants octadecylammonium bromide (OTDB) and dodecylammonium bromide (DODB) to different crystal

Available online xxxx
Accepted 28 March 2019
Received in revised form 27 February 2019
Received 15 January 2019

© 2019 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
planes. Pan’s group [34] successfully prepared single-crystal CsPbX₃ (X = Cl, Br, I) perovskite micro/nanorods with triangular cross section through chemical vapor deposition (CVD), the micro-/nanorods exhibited excellent laser properties with low lasing thresholds of 14.1 μJ/cm² and high quality factor of 3.500. In a word, one-dimensional (1D) and two-dimensional (2D) lead halide perovskite were widely prepared and studied due to the outstanding laser properties such as threshold, tunable wavelength, which are even better than traditional II-VI/III-V semiconductors. However, the mechanism of the excitonic recombination rate under different pumping energy density is still unclear. And the excitonic recombination dynamic process of MAPbBr₃ perovskite with different pumping energy is rarely reported.

Herein, we successfully fabricated single crystal cuboid shaped MAPbBr₃ perovskite via solvothermal method. By adjusting reaction time, we can control etching process and achieved M- and MS-MAPbBr₃ perovskite, respectively. Moreover, the high-quality, good stability, smooth surface, as well as uniform geometries enabled the as-prepared crystals to function as good microcavity for laser. Therefore, we evaluated the lasing behavior and excitonic recombination dynamics in M- and MS-MAPbBr₃ perovskite, and found that the as-prepared MAPbBr₃ perovskites exhibited favourable lasing properties. So, the cuboid shaped MAPbBr₃ perovskites prepared by the solvothermal method under different pumping energy is rarely reported.

2. Experimental

2.1. Sample preparation

The MS-MAPbBr₃ was prepared by a typical solvothermal process. A 60 mg (Pb(OAc)₂·3H₂O) was completely dissolved in 4 mL of hydrobromic acid by ultrasonic treatment for 15 min, and then 30 mL of isopropanol was added and stirred for 30 min. Then, 1.2 mL of methylamine solution was rapidly injected into the above solution, and transferred into Teflon-lined autoclave, which was sealed and kept at 120 °C for 12 h in a furnace, and cooled down to room temperature. Finally, the orange product was obtained by vacuum filtration and washed with isopropanol, and then dried in a vacuum oven at 50 °C for overnight.

2.2. Characterization and measurement

The morphology and energy-dispersive X-ray spectroscopy (EDS) mapping of the MAPbBr₃ were collected by a field-emission scanning electron microscopy (FESEM, Hitachi SU-8020) equipped with an energy dispersive X-ray analysis system (EDX, Materials Analysis Division, Apollo XLT2). The X-ray diffraction (XRD) patterns were measured by X-ray diffractometer (PANalyticalX’Pert 3 Powder) with a Cu Kα radiation (λ = 1.54050 Å) operated in the 2θ range from 10° to 50° by using the MAPbBr₃ powder. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) were performed on a JEM-2200FS electron microscope operating at 200 kV. Ultraviolet and visible absorption (UV–vis) spectra were recorded with a spectrophotometer (Shimadzu UV-3600). All the PL, lasing, and TRPL were performed with the confocal μ-PL system (WITec, alpha-300). The CW lasers at 400 nm were used as the excitation sources for PL measurements of the M- and MS-MAPbBr₃ perovskite. The laser was introduced to the confocal system and focused onto the samples through a 100× objective at the top of the samples. The PL signals of each M- and MS-MAPbBr₃ perovskite crystal were collected by the same objective and detected by a CCD spectrometer (600 g/mm grating). Spectra physics Ti: sapphire laser at 405 nm (100 fs, 1 kHz) was used for lasing and TRPL measurements. The pumping source was focused obliquely on the sample by a lens. The TRPL of the M- and MS-MAPbBr₃ perovskite was detected with a streak camera system (Hamamatsu, C10910) with a temporal resolution of about 18 ps.

3. Results and discussion

The samples were prepared by a typical solvothermal process under the reaction temperature of 120 °C. Fig. 1a–d schematically illustrated the MAPbBr₃ perovskite’s morphology evolution from microparticles to MS-MAPbBr₃. At the initial stage, MAPbBr₃ rapidly nucleated in the precursor solution and grown to microparticles when reaction was maintained for 30 min. Then the MAPbBr₃ microparticles grown to M-MAPbBr₃ when reaction sustained about 2 h. Interestingly, as the reaction continued, the centers of lateral surfaces were etched and formed multi-steps after the reaction time lasting about 8 h. The scanning electron microscope (SEM) images in Fig. 1e–h demonstrated the morphological evolution of the MAPbBr₃ perovskite with the increasing of reaction time. Fig. 1e showed the morphology of MAPbBr₃ perovskite microparticles with cuboid shape and size in the range of 0.5–2 μm. In general, the MAPbBr₃ perovskite was preferentially grown to symmetrically cuboid crystal morphology due to the typical cuboid unit cell structure with high symmetry in three dimensions. As the crystal growth process predicted by Bravais-Friedel-Donnay-Harker (BFDH) law [35], when reaction time increased to 2 h, the MAPbBr₃ perovskite microparticles have grown into ~10 μm with flat surfaces as shown in Fig. 1f. When the reaction
time was increased to 4 h, it could be clearly observed that small etching traces formed a step on (0 0 1) surfaces as shown in Fig. 1g. Then, as the reaction proceeded further, the multi-steps emerged as shown in Fig. 1h. The lower magnification SEM images (Fig. S1 online) of the M- and MS-MAPbBr₃ demonstrated that the as-prepared sample still kept uniform cuboid shape. In order to explore the effect of growth temperature on the morphology of MAPbBr₃ perovskite, we prepared the sample at 80, 100, 120 and 140 °C for 12 h, the SEM images were shown in Fig. S2 (online). It can be seen that the sizes of MAPbBr₃ microcuboid have grown from 0.5 to 2.5 to 5.0–15.0 μm when the reaction temperature increased from 80 to 100 °C. When the reaction temperature increased to 120 °C, the sample has grown to 10.0–30.0 μm and the lateral surfaces were etched and formed in multi-step-MAPbBr₃ perovskite. With the temperature further increased to 140 °C, the reaction proceeded more quickly and led multi-step-MAPbBr₃ perovskite nonuniform in size and shape. These results indicated that the reaction time and temperature play a significant impact on the synthesis of MS-MAPbBr₃ perovskite. The growth mechanism of the MS-MAPbBr₃ can be explained as follow. Due to the reaction temperature (120.0 °C) above the phase transition temperature (~36.2 °C), the MAPbBr₃ perovskite belonged to cubic phase and exhibited high symmetry in three dimensions. In this crystal structure, the hydrogen bonding interactions between organic and inorganic components and strong ionic and covalent interactions within the metal halide sheets determined the crystal stability. The high reaction temperature will lead the lattice constants (a, c) increased and weakened the hydrogen bond. Furthermore, with the reaction going on, the amount of perovskite precursors would decrease and lead to dissolution of as-grown crystals. Compare with the corners and edges, lateral surfaces possessed more defects and more reactive sites. So the dissolution occurred in the lateral surface, instead of the corners and edges with higher stability [36]. Meanwhile, Ostwald ripening mechanism exists in the whole experimental process, which facilitates the initial small particles easy fusion between the center and the edge that have aligned in the same crystallographic direction. Therefore, the dissolution is a dynamic balance process of dissolution and recrystallization. Notably, the as-synthesized crystals remained the cuboid shape and flat surface, which provides the possibility for laser behavior.

Fig. 2a showed the schematic of the unit cell and crystalline structure of CH₃NH₃PbBr₃ perovskite, presenting that (PbBr₆)₄⁺ octahedrons form the framework with CH₃NH₃ located at the eight vertices of a cube. The crystalline information of as-prepared MS-MAPbBr₃ perovskite was investigated by TEM and XRD. Fig. 2b showed a typical low-magnification TEM image of the as-prepared MS-MAPbBr₃ perovskite, indicating the square shape and straight boundary. The inset showed the SAED pattern of the MS-MAPbBr₃, the sharp diffraction spots are ascribed to the [0 1 0] and [1 0 0] of cuboid MAPbBr₃ perovskite structure. In addition, the XRD pattern of MS-MAPbBr₃ was shown in Fig. 2c. The sharp diffraction peaks indicated the as-prepared MS-MAPbBr₃ perovskite possessed high quality crystalline structure. The sharp peaks appeared at the 2θ of 14.90°, 21.13°, 30.10°, 33.73°, 37.10°, 43.10°, 48.45° corresponding to the (1 0 0), (1 1 0), (2 0 0), (2 1 0), (2 1 1), (2 2 0), (3 0 0), and (3 1 0) planes, respectively. The results were well in agreement with the crystal structure of cuboid-MAPbBr₃ perovskite with lattice constant a = 5.9 Å and space group of Pm3m as previously reported [37]. The EDS map-
ping analysis of a single MS-MAPbBr₃ in Fig. 2d revealed that Pb and Br elements were uniformly distributed in a whole MS-MAPbBr₃ perovskite.

To further demonstrate the lasing behavior and excitonic recombination dynamics in M- and MS-MAPbBr₃ perovskite, the emission spectra with different pumping energy density were systematically investigated by the confocal μ-PL systems as shown in Fig. 3a (Witec alpha-300). The femtosecond laser beam (405 nm, 100 fs, 1 kHz) was focused (spot size, ~50 μm) by a lens, which broadly illuminated the whole individual MAPbBr₃ perovskite. The local optical signal at the MAPbBr₃ perovskite corner was collected by a confocal microscope and then detected by a CCD spectrometer. Fig. 3b showed typical UV–vis absorption and PL spectrum of the MS-MAPbBr₃ perovskite. It could be observed that the UV–vis absorption spectra displayed a maximum at 539.0 nm and the PL spectrum presented a single Gaussian-shape peak at 557.0 nm, in good agreement with those of MAPbBr₃ bulks. The PL spectra showed a narrow linewidth with a full-width at half-maximum (FWHM) of ~23.0 nm. It was worth to note that PL spectra occurred red-shift comparing with UV–vis absorption, which can be ascribed to Stokes shift. In large perovskite crystals, the bulk effect will influence on excitonic behavior, and lead to the red shift of PL peak [5,38,39]. Fig. 3c showed typical PL spectrum of single MS-MAPbBr₃ perovskite with side length of 17.7 μm under different pump energy density. At the pumping energy density of 197.5 μJ/cm², the MS-MAPbBr₃ perovskite showed a broad emission spectrum around the 555.0 nm with FWHM of ~26.0 nm [40]. When the pumping energy density increased to 445.9 μJ/cm², there were several sharp peaks near 555.0 nm and the FWHM decreased to 0.71 nm, which indicated the occurrence of laser behaviour. The quality factor Q can be calculated by the equation: $Q = \frac{\lambda}{\Delta \lambda}$, where λ is the emission wavelength, $\Delta \lambda$ is the FWHM of the lasing wavelength. So the Q factor of MS-MAPbBr₃ perovskite corresponded to ~780. It should be noted that a slightly blue-shift of lasing peaks could be observed with the increasing of the pumping energy density. This could be owing to multiple mechanisms, such as thermally induced bandgap/refractive index change, band filling, optical density fluctuations, and electron/hole many-body interactions [12,41,42].

The insets of Fig. 3c were the dark-field optical images at low (top) and high (bottom) pump energy density. When pumping energy density is under the threshold (P_{th}), strong green lasing was emitted at the edges. This is a typical feature of an optical waveguide inside the MS-MAPbBr₃ perovskite, showing this construction provided a natural optical microcavity for the lasing [43]. The resonant cavity can be considered as the edges of MS-MAPbBr₃ perovskite. According to the previous reports, the free spectral range (FSR) of Fabry-Perot cavity was calculated by the equation: $FSR = \frac{\lambda}{\Delta n}$, where λ is emission wavelength, Δn is the group refractive index as a function of wavelength. The Δn around 555.0 nm can be identified with a value of 6.7 and the length of edges is 17.7 μm [33]. Based on the above conditions, we obtained the FSR is 1.3 nm, and the results are consistent with the experimental results. The optical mode of MS-MAPbBr₃ perovskite can be considered as Fabry-Perot mode. The peak centered at 555.2 nm may originate from the resonance of a smaller cavity, where the frame of the multilayer structure acts as an oscillating mirror. Because of the large enough FSR, only one mode was observed. Fig. 3d showed the integrated PL intensity and the FWHM of PL peak as a function of pumping energy density. When pumping energy density is under the lasing threshold ($P_{th} = 409.8 \mu J/cm²$) of the MS-MAPbBr₃ perovskite, a broad emission spectra at the center of ~555.0 nm with a FWHM of ~26.0 nm were observed, and the integrated emission intensity increased slowly with pumping energy density, while the pumping energy density further increased above the threshold, the emission intensity increased dramatically, indicating the occurrence of lasing [12].

Similarly, the perovskite emission spectra of M-MAPbBr₃ perovskite with the different pumping energy density were also
measured under the same condition. Fig. 3e showed typical power-dependent PL spectrum of single M-MAPbBr$_3$ perovskite. At low pumping energy density ($P < P_{th}$), the emission spectrum showed a broad peak around ~548.0 nm with a FWHM of ~22.0 nm, which corresponded to spontaneous emission (SPE). When the P_{pump} was over P_{th}, some sharp peaks appeared at 555.0 nm, indicating the occurrence of lasing action. The FWHM of the M-MAPbBr$_3$ perovskite under the pumping energy density of 477.8 J/cm2 was 0.47 nm, and corresponding Q factor was 1,810 which was higher than MS-MAPbBr$_3$ perovskite’s 780. The insets of Fig. 3e were dark-field optical images at low (top) and high (bottom) pump energy density. It showed that bright green light emitted at the square cavity edges and corners, which indicated that the square surface can effectively confine the optical field and provide a perfect constructure for WGM mode cavity. The FSR of the WGM cavity can be calculated by the equation: FSR = $\frac{\lambda^2}{2L\eta_n}$, where λ is the wavelength emitted, L is the cavity width and η_n is the group refractive index. For WGM mode the η_n around 555.0 nm can be identified as a value of 7.1 [33]. The FSR of M-MAPbBr$_3$ perovskite is 1.5 nm, which is consistent with the experimental results. Furthermore, FDTD simulation of electric field distribution inside the M-MAPbBr$_3$ perovskite cavity as shown in Fig. S4b (online). The pattern shows typical features of WGM modes with strongest out-coupling or leakage in four corners compared with the other places. So the optical mode of M-MAPbBr$_3$ perovskite can be ascribed to the WGM mode. Fig. 3f showed the integrated intensity and the FWHM of PL as a function of P_{pump}, which indicated lasing oscillation and gave a lasing threshold of $P_{th} = 290.7$ J/cm2 and lower than MS-MAPbBr$_3$ perovskite’s 409.8 J/cm2.

To further understand the occurrence of the lasing and excitonic recombination dynamics in M- and MS-MAPbBr$_3$ perovskite, we carried out TRPL measurements using a streak camera system with a 405 nm fs-laser as an excitation light source. The decay lifetime is derived from the biexponential decay function

$$y = A_1 \exp\left(-\frac{t}{\tau_1}\right) + A_2 \exp\left(-\frac{t}{\tau_2}\right).$$

The fitted results corresponding to the right table, and all the fitted errors were <2%. Fig. 4a showed the plots of the decay curves for MS-MAPbBr$_3$ perovskite, indicating the evolution from spontaneous emission (SE) to lasing emission with increasing of pumping energy density. The emission lifetime consists of two components: a short time τ_1, indicating that the emission state originated from bandedge radiative recombination and longer lifetime τ_2 denoting trap state recombination, respectively [44,45]. The averaged lifetime(t_{averaged}) can be used to evaluate the competition of two mechanisms, and could be calculated according to the following equation

$$t_{\text{averaged}} = \frac{A_1 \times \tau_1^2 + A_2 \times \tau_2^2}{A_1 \times \tau_1 + A_2 \times \tau_2}$$

It is clearly that the t_{averaged} decreased from 372.3 to 14 ps when P_{pump} increased from 19.1 J/cm2 ($P_{\text{pump}} < P_{th}$) to 445.9 J/cm2 ($P_{\text{pump}} > P_{th}$), it can be ascribed to the faster recombination rate and occurrence of an effective stimulated emission process. It was also found in M-MAPbBr$_3$ perovskite as shown in Fig. 4b. For the pumping energy density below the threshold (15.5 J/cm2), the t_{averaged} is 215.5 ps which shorter than MS-MAPbBr$_3$ perovskite’s 372.3 ps. For the pumping energy density above the threshold (700.7 J/cm2), a short emission lifetime of $t_{\text{averaged}} = 16$ - ps is observed, which further demonstrates the transition from spontaneous emission to stimulated emission. These TRPL results of the different cuboid shaped MAPbBr$_3$ perovskite exhibited the same feature. When pumping energy density below the lasing threshold ($P_{\text{pump}} < P_{th}$), the samples have longer lifetime, while the pumping energy density above the lasing threshold ($P_{\text{pump}} > P_{th}$), the lifetime decreased rapidly. It could be explained that the material undergoes spontaneous emission at low pumping energy density which means the low probability of exciton recombination, resulting in the slow lifetime. However, as pumping energy density increased to lasing threshold ($P_{\text{pump}} > P_{th}$), the high carrier density permitted population inversion and produced stimulated emission. Meanwhile, the high probability of exciton recombination created fast lifetime [45,46].

4. Conclusion

In summary, we successfully fabricated single crystal cuboid shaped M- and MS-MAPbBr$_3$ perovskite via solvolothermal method. And the morphologies of MAPbBr$_3$ perovskite could be controllably tailored only by adjusting reaction time and temperature without any surfactant. The as-prepared crystals showed high quality, good stability, smooth surface, as well as uniform geometries. Furthermore, we achieved room-temperature optically pumped lasing in single crystal M- and MS-MAPbBr$_3$ perovskite. And the TRPL results revealed the transition from spontaneous emission to stimulated emission with the pumping energy density increasing from below lasing threshold to above lasing threshold. The lifetime of M- (MS-) MAPbBr$_3$ perovskite varied from 215.5 (372.3) ps to 16 (14) ps with increasing of pumping power density, respectively. Therefore, we believe that these single crystal cuboid shaped MAPbBr$_3$ shall shed light on the practical applications of lead halide perovskite-based optoelectronic devices.

Conflict of interest

The authors declare that they have no conflict of interest.
Acknowledgments

This work was supported by the National Natural Science Foundation of China (11674023, 51331002, 51622205, 61675027, 61505010, 51502018, 51525202 and 51432005), 111 Project (B170003), the National Key Research and Development Program of China (2016YFA0202703), Beijing Natural Science Foundation (4181004 and 4182080), and the “Thousand Talents” Program of China for Pioneering Researchers and Innovative Teams (U1404619).

Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Appendix A. Supplementary material

Supplementary data to this article can be found at https://doi.org/10.1016/j.scib.2019.04.016.

References

Caofeng Pan received his B.S. degree (2005) and Ph.D. degree (2010) in Materials Science and Engineering from Tsinghua University, China. He then joined the Georgia Institute of Technology as a postdoctoral fellow. He has been a professor and a group leader at Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences since 2013. His main research interests focus on the fields of piezotronics/piezo-phototronics for new electronic and optoelectronic devices.

Anlian Pan received his Ph.D. in Condensed Matter Physics from the Institute of Physics, Chinese Academy of Sciences, in 2006. From 2006 to 2007, he worked as a Humboldt Research Fellow at the Max Planck Institute of Microstructure Physics. Later in 2007, he joined Arizona State University as a Postdoctoral Fellow, where he became a Research Assistant Professor. He is currently a Professor of Physics and Material Science in Hunan University, and is the director of the Key Laboratory for Micro-Nano Physics and Technology of Hunan Province. He has published over 200 papers in the international Journals, with more than 80 papers in the top Journals, like Physical Review Letters, Nature Nanotechnology, Nature Communications, Chem. Soc. Rev., J. Am. Chem. Soc., Adv. Mater and Nano Letters. He is the organizer or co-organizers of some important international conferences, and is the editorial board member of some important international academic journals. He has been awarded quite some academic prizes or honors, like the National Science Fund for Distinguished Young Scholars, the Natural Science Award of Hunan Province, and Ten thousand people plan to lead talents of china. His main research interests lie in controlled growth and integrated photonics device applications of low-dimensional semiconductor nanostructures.

Tianfeng Li received his B.S. degree in physics at Henan University in 2001, and received his Ph.D. degree at Institute of Semiconductors, CAS under the supervision of Prof. Yonghai Chen and Zhanguo Wang in 2012. During 2015-2016, He worked as visiting scholar with Professor Caofeng Pan at Beijing Institute of nanoenergy and nanosystem, CAS. In 2012, he joined at the College of physics and electron at Henan University to start his independent career. His current research interests are focused on fabrication and optical property of nanomaterial.

Rongming Wang received his Bachelor and Master’s Degrees in Physics from Peking University and Ph. D. in Materials Science from Beijing Institute of Aeronautical Materials, China. In 2004–2005, he was a visiting scholar in University of California, Berkeley. Then he joined Beihang University as a Professor in physics. Currently, he is a professor in University of Science and Technology Beijing, Director of Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science and Team Leaders for Advanced Functional Material, Beijing Advanced Innovation Center of Materials Genome Engineering. His research interests include magnetic nanomaterial, transmission electron microscopy and interface science.

Please cite this article as: F. Li, J. Lu, Q. Zhang et al., Controlled fabrication, lasing behavior and excitonic recombination dynamics in single crystal CH$_3$NH$_3$PbBr$_3$ perovskite cuboids, Science Bulletin, https://doi.org/10.1016/j.scib.2019.04.016