High Br⁻ Content CsPb(ClₓBr₁₋ₓ)₃ Perovskite Nanocrystals with Strong Mn²⁺ Emission through Diverse Cation/Anion Exchange Engineering

Fei Li, Zhiguo Xia,*†‡ Caofeng Pan,* Yue Gong,§ Lin Gu,§ Quanlin Liu,† and Jin Z. Zhang†

†The Beijing Municipal Key Laboratory of New Energy Materials and Technologies, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
‡Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100083, P. R. China
§Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States

ABSTRACT: The unification of tunable band edge (BE) emission and strong Mn²⁺ doping luminescence in all-inorganic cesium lead halide perovskite nanocrystals (NCs) CsPbX₃ (X = Cl and Br) is of fundamental importance in fine tuning their optical properties. Herein, we demonstrate that benefiting from the differentiation of the cation/anion exchange rate, ZnBr₂ and preformed CsPb₁₋ₓClₓMn²⁺ NCs can be used to obtain high Br⁻ content Cs(Pb₁₋ₓZnₓ)₁₋ₓ(ClₓBr₁₋ₓ)₃:Mn²⁺ perovskite NCs with strong Mn²⁺ emission, and the Mn²⁺ substitution ratio can reach about 22%. More specifically, the fast anion exchange could be realized by the soluble halide precursors, leading to anion exchange within a few seconds as observed from the strong BE emission evolution, whereas the cation exchange instead generally required at least a few hours; moreover, their exchange mechanism and dynamics process have been evaluated. The Mn²⁺ emission intensity could be further varied by controlling the replacement of Mn²⁺ by Zn²⁺ with prolonged ion exchange reaction time. White light emission of the doped perovskite NCs via this cation/anion synergistic exchange strategy has been realized, which was also successfully demonstrated in a prototype white light-emitting diode (LED) device based on a commercially available 365 nm LED chip.

KEYWORDS: perovskite nanocrystals, ion exchange, photoluminescence tuning, Mn²⁺ emission, white light LEDs

INTRODUCTION

Colloidal all-inorganic cesium lead halide (CsPbX₃) perovskite nanocrystals (NCs) have attracted a great deal of attention in recent years because of their outstanding photoelectric properties¹⁻³ and facile chemical tunability of the band gap.¹⁻⁶ CsPbX₃ NCs are a promising alternative to II–VI and III–V semiconductor quantum dots (QDs) in various applications, such as low-threshold optically pumped lasers,⁷⁻⁸ highly efficient light-emitting diodes (LEDs), detectors, and so on.⁹⁻¹⁰ Many efforts have been also made to improve the stability and tune the optical properties of perovskite NCs.¹¹⁻¹² Recently, perovskite NCs or QDs doped with transition-metal ions have been also explored with tunable properties.¹³⁻¹⁶ The dopants in perovskite NCs not only achieve the objective of replacement of Pb²⁺ but also afford a way to introduce new optical, electronic, and magnetic properties.⁴⁻¹⁷ Doping of perovskite NCs with Mn²⁺ has been studied because it potentially imparts both optical and charge carrier transport properties.¹⁷⁻¹⁸ Mn²⁺-doped perovskite NCs maintain the tetragonal crystalline structure of the CsPbCl₃ host and exhibit strong band edge (BE) emission of Pb-based perovskite NCs. Additionally, Mn²⁺ substitution led to an additional characteristic emission of Mn²⁺ as well as enhancement of the photoluminescence quantum yields (PLQYs) of CsPbCl₃ from 5 to 54%.¹⁹ As is well-known, the perovskite NCs suffer from thermal instability that severely restricted their practical applications. Such notorious thermal instability of CsPbCl₃ NCs originates primarily from their low formation energies of perovskite lattices analogous to those of hybrid organic–inorganic halide perovskites. Interestingly, the formation energies of CsPbₓ−₁X₃ₓ−₁Mn perovskite NCs could be enhanced compared with those of their pure counterparts because of doping of Mn²⁺ in the host lattices and thereby fundamentally circumventing their poor thermal stability.²⁰

Received: December 9, 2017
Accepted: March 16, 2018
Published: March 16, 2018
To date, compatible band alignment and efficient host exciton energy transfer to Mn$^{2+}$ have not been achieved in Br$^-$-dominant CsPbX$_3$ hosts. In previous studies, the poor emission intensity of Mn$^{2+}$ in such hosts was ascribed to interplay among several competing processes for BE emission and Mn$^{2+}$ emission, including BE electron–hole recombination and the Mn$^{2+}$ $^4T_{1g} \rightarrow ^6A_1$ transition, as well as forward and back energy transfer between the perovskite hosts and the Mn$^{2+}$ ion. The energy difference between the BE and Mn$^{2+}$-based transitions force-effectually affected the competition between the latter two processes. With the increase of the Br$^-$ content in the CsPbX$_3$ hosts, the energy difference becomes smaller, which reduced the forward energy transfer and strong Mn$^{2+}$ emission, leading to reduced Mn$^{2+}$ emission. However, the Mn$^{2+}$ substitution ratio is extremely low in Br$^-$-dominant CsPbX$_3$ hosts up to now, which impeded the study of the optical properties and energy-transfer mechanism in Br$^-$-dominant CsPb$_{1-x}$X$_x$:Mn$^{2+}$ NCs. Hence, heavy doping of Mn$^{2+}$ in such NCs is highly desired to gain a deeper fundamental understanding of the above issues, and this requirement also becomes one of the motivations of this present work.

Here, we produced high Br$^-$ content CsPb$_{1-x}$Mn$_x$Cl$_3$ perovskite NCs with strong Mn$^{2+}$ emission via a diverse rate of ion exchange engineering (RIEE) strategy. The basic idea for RIEE originated from the different rates between anion exchange and cation exchange in lead halide perovskite NCs. The rate of anion exchange can be controlled by the solubility of the halide precursors, for which highly soluble precursors led to anion exchange within a few seconds, whereas the exchange with the less soluble salts was much slower. To our best knowledge, the cation exchange in lead halide perovskite NCs generally required at least a few hours as indicated by the shift in the photoluminescence (PL) spectrum. Motivated by the need to control the diverse ion exchange process, we employed ZnBr$_2$ as precursors to react with preformed CsPb$_{1-x}$Cl$_x$:Mn$^{2+}$ NCs to realize the doping of high-content Mn$^{2+}$ in Br$^-$-dominant perovskite NCs with strong Mn$^{2+}$ emission. The RIEE reaction occurred between ZnBr$_2$ and preformed CsPb$_{1-x}$Cl$_x$:Mn$^{2+}$ NCs as illustrated in Scheme 1. The red shift of BE emission from 392 to 474 nm occurred immediately, and the Mn$^{2+}$ substitution ratio could stay at 22% in the Cs(Pb$_{1-x}$Zn$_x$)$_3$:Mn$^{2+}$ NCs in a short ion exchange reaction time, which is not possible with the direct synthesis method or the halogen exchange method. With the increase of the ion exchange reaction time, the intensity of Mn$^{2+}$ emission was reduced because of the slow replacement of Mn$^{2+}$ by Zn$^{2+}$. This phenomenon demonstrates that the Mn$^{2+}$ content is another key factor that affects the intensity of Mn$^{2+}$ emission in the high Br$^-$ content CsPb$_{1-x}$Cl$_x$:Mn$^{2+}$ perovskite NCs. Moreover, the exchange of doped Mn$^{2+}$ with Zn$^{2+}$ can be controlled or even terminated by purification of the ion exchange system at different reaction times. Therefore, white light-emitting perovskite NCs have been prepared and used successfully in the fabrication of a prototype white LED device based on a commercially available 365 nm LED chip. This strategy opens up new opportunities to study the ion exchange process of doped halide perovskite NCs with diverse composition and the tunable PL, which will be also general for the preparation of other doped semiconductor QDs.

EXPERIMENTAL SECTION

Materials.

Cs$_2$CO$_3$ (99.9%, Sinopharm), octadecene (ODE, 90%, Aladdin), oleic acid (OA, 90%, Aladdin), PbCl$_2$ (99.9%, Sinopharm), ZnBr$_2$ (99.9%, Aladdin), MnCl$_2$ (99%, Aladdin), oleylamine (OLA, Aladdin, 70%), hexane (99.9%, Sinopharm), and ethyl acetate (99%, Sinopharm) were used in this study. All chemicals were used as received.

Preparation of Cesium Oleate. Cesium oleate solution was prepared following the reported approach by Protesescu et al. 1 In brief, 1.2 mmol of Cs$_2$CO$_3$ and 1.2 mL of OA were loaded into a 3-neck flask along with 15 mL of ODE, degassed under vacuum at 120 °C for 0.5 h, followed by a second degassing phase at 150 °C under N$_2$ until clear solution was obtained.

Synthesis of CsPb$_{1-x}$Mn$_x$Cl$_3$ NCs. ODE (10 mL), OLA (4 mL), OA (4 mL), PbCl$_2$ (0.36 mmol), and MnCl$_2$ (0.72–2.16 mmol) were loaded into a 50 mL 3-neck flask and dried under vacuum for 0.5 h at 120 °C. After complete solubilization of PbCl$_2$, the temperature was changed to 170 °C and a hot (~150 °C) Cs-oleate solution (1.2 mL, prepared as described above) was quickly injected, and the reaction mixture was immediately cooled by an ice-water bath.

Isolation and Purification of NCs. The NCs were extracted from the crude solution by centrifuging at 8000 rpm for 4 min. After centrifugation, the supernatant was discarded and the particles were redispersed in 10 mL of hexane. Then, the hexane solution was centrifuged for 4 min at 5000 rpm, and the precipitate was discarded. Subsequently, 20 mL of ethyl acetate was added to induce aggregation. The precipitate was collected by centrifuging at 9000 rpm for 4 min. After redispersion, the supernatant was discarded and the particles were redispersed in 10 mL of hexane. Then, the hexane solution was centrifuged for 4 min at 5000 rpm, and the precipitate was discarded. Finally, 5 mL of hexane was added to the precipitate, resulting in a colloidal dispersion of CsPb$_{1-x}$Mn$_x$Cl$_3$ NCs. We used ethyl acetate to induce aggregation, and typically, a large amount of antisolvent had to be added, with a ratio of 1:2, resulting in precipitation of the NCs.

Ion Exchange Reactions. Ion exchange precursor stock solutions were prepared by dissolving 0.30 mmol of ZnBr$_2$ in 10 mL of hexane, in the presence of 200 μL of OLA. The ion exchange reactions can be conducted under ambient conditions. A solution of CsPb$_{1-x}$Mn$_x$Cl$_3$ QDs in hexanes was stirred at ambient temperatures, and the ZnBr$_2$ solution was added directly to the solution of former NCs. The amount of ZnBr$_2$ solution added was determined based on the desired band gap.

Fabrication of LEDs from CsPb$_{1-x}$Zn$_x$(Cl$_{1-y}$Br$_y$)$_3$:Mn$^{2+}$ NCs. In the preparation of the color conversion layer, Cs(Pb$_{1-x}$Zn$_x$)$_3$(Cl$_{1-y}$Br$_y$)$_3$:Mn$^{2+}$ NCs in hexane were mixed with the curable resin directly and then put in a vacuum chamber to remove the solvent.
Finally, the mixtures were coated onto commercial GaN LED chips with 365 nm emission operated at 5.0 V.

Characterization. X-ray diffraction (XRD) was performed on a PANalytical X’Pert powder diffractometer equipped with a Cu Kα radiation source and operated at 40 kV and 40 mA. Transmission electron microscopy (TEM) was performed on a Tecnai F20 microscope operated at 200 kV on 200 mesh carbon-coated nickel grids. The UV–vis–NIR absorption spectra of colloidal solutions were collected at room temperature using a Varian Cary 5 spectrophotometer. The PL spectra were measured using a fluorescence spectrophotometer (FLSP920 fluorescence spectrophotometer, Edinburgh Instruments Ltd, UK). The luminescence decay curves were obtained using the same FLSP920 fluorescence spectrophotometer. The PLQY was measured by an absolute PLQY measurement system (C9920-02, Hamamatsu Photonics) with an integrating sphere at room temperature.

RESULTS AND DISCUSSION

The Mn2+-doped CsPbCl3 NCs exhibit electronic absorption and PL features that are very similar to those in previous reports19 (Figure 1a). The PL emission spectrum shows dual emission peaks, including narrow BE emission peaked at 392 nm with full-width at half-maximum (fwhm) of ca. 110 meV and a broad PL band (fwhm ca. 260 meV) attributable to Mn2+ d–d transition, peaked at ~607 nm, independent of the dopant concentration.27,28 The intensity of Mn2+ emission is ~10 times stronger than that of the BE emission because the Mn2+ substitution reached 25% [as

Figure 1. Spectral characterizations of Mn2+-doped perovskite NCs before and after the ion exchange reaction. (a) Electronic absorption and PL spectra of CsPb0.75Cl3:0.25Mn2+ NCs. CsPb0.75Cl3:0.25Mn2+ NCs exhibit dual-color emission, with the broad band peaked at ~607 nm, arising from a Mn2+ d–d transition and the narrow band peaked at ~392 nm attributed to BE emission. (b) Absorption and PL spectra of CsPb0.75Zn0.08Cl0.93Br2.04:0.19Mn2+ after the ion exchange reaction for 4 h, and the BE emission is shifted to 474 nm because the Br− incorporates into the host. Meanwhile, a strong Mn2+ emission was observed. The PLE spectrum for the Mn2+ emission is also red-shifted and resembles the absorption spectrum, indicating that Mn2+ is sensitized by the host NCs.

Figure 2. Spectral evolution of Mn2+-doped CsPb1−xClxMn2+ NCs during the ion exchange reaction. (a,d) PL spectra of ion exchanged NCs collected at different reaction times using CsPb0.75Cl3:0.25Mn2+ and CsPb0.92Cl3:0.08Mn2+ as parent NCs, respectively. The inset of (d) is the PL spectra of CsPb0.92Cl3:0.08Mn2+ NCs. (b,e) Variation of peak positions of BE emission and Mn2+ emission. The peak of BE emission nearly locked at a certain wavelength at the very start of the ion exchange reaction. The peak of Mn2+ emission shifted to shorter wavelength with the increasing ion exchange time. (c,f) Intensity ratio of Mn2+ emission and BE emission collected at different ion exchange reaction times, and the color change has been also given in the CIE diagram in the corresponding insets.
determined by inductively coupled plasma atomic emission spectroscopy (ICP−AES)]. As the ion exchange was performed between ZnBr2 and the as-synthesized CsPb0.75Cl3:0.25Mn2+ NCs with the reaction time of 4 h, the Mn2+ emission remains unchanged in the peak position throughout the exchange, whereas the BE emission peak shifts to 474 nm (Figure 1b). The chemical composition of such exchanged NCs with an exchange time of 4 h was measured to be CsPb0.75Zn0.08Cl0.93Br2.04:0.19Mn2+.

In a previous study, the intensity ratio of Mn2+ emission and BE emission decreased with the increasing bromide content and the Mn2+ emission almost vanished when the host reached the expected halogen composition of perovskite NCs. However, after the ion exchange occurred between ZnBr2 and CsPb0.75Cl3:0.25Mn2+ NCs, strong Mn2+ emission, more intense than that of BE emission, could still be observed, although the change in the intensity ratio between the Mn2+ emission and BE emission decreased as well. The Mn2+-doped and high Br− content perovskite NCs with strong Mn2+ emission possess novel optical properties involving new pathways for energy transfer, as discussed later. Additionally, the PL excitation (PLE) spectrum collected by monitoring the PL of Mn2+ emission at 598 nm closely follows the absorption spectrum. This indicates that similar to Mn2+-doped II−VI semiconductor NCs, the nominally forbidden Mn2+ emission is sensitized by the CsPbX3 NCs host, confirming successful Mn2+ doping.

The PL spectral evolution over time of Mn2+-doped CsPb0.72Cl3:0.25Mn2+ NCs during ion exchange is given in Figure 2a. The intensity of the Mn2+ emission is stronger than that of BE emission at the very start (0.05 h) of the ion exchange reaction. With the increasing reaction time, the intensity of BE emission was enhanced and the intensity of Mn2+ emission decreased relatively. At the reaction time of 5 h, the intensity of the two emission bands became nearly the same, and with further increase in time, the intensity of the BE emission surpassed that of the Mn2+ emission. Notably, the peak positions of the BE emission were related with a different halide composition of the perovskite NCs, whereas the Mn2+ emission around 590 nm was dependent on the Mn2+ doped content. As can be seen in Figures 1a and 2b, the BE emission peak shifted from 392 nm for CsPb0.75Cl3:0.25Mn2+ to 474 nm for CsPb0.72Zn0.03Cl0.91Br2.05:0.22Mn2+ at 0.05 h, with no significant change with the prolonging of reaction time. This phenomenon indicates that the halide exchange that occurred between ZnBr2 and CsPb0.75Mn0.25Cl3 NCs was very fast, which resulted in the constant halide composition during the ion exchange reaction. For the Mn2+ emission, the PL peak shifted monotonically to the blue, eventually reaching 590 nm, which can be attributed to the reduced Mn2+ content, causing the weakening of Mn−Mn interactions. The time-dependent peak evolution of the Mn2+ emission indicates a much slower divalent cation exchange rate. The content of Mn2+ variation is also confirmed by ICP−AES that showed the halide composition being constant at the very start of the ion exchange reaction and the Mn2+ being replaced by Zn2+ slowly with the increase of the ion exchange reaction time, as shown in the Figure 3b.

To further understand the effect of the Mn2+ content on the intensity of Mn2+ emission in high Br− concentration perovskite NCs, a similar ion exchange reaction was conducted by employing a small amount of Mn2+-doped CsPbCl3 NCs (8% Mn2+ substitution) as the parent NCs. The BE and Mn2+ emission peaks of CsPb0.92Cl3:0.08Mn2+ NCs are consistent with those of a previous study (inset of Figure 2d). Additionally, the intensity of Mn2+ emission in the parent CsPb0.92Cl3:0.08Mn2+ NCs is just 1.24 times greater than that of BE emission, which is much smaller than that of the
CsPb0.73Cl3:0.25Mn2+ NCs caused by the smaller amount of Mn2+ substitution. As the ion exchange reaction occurred, the PL spectral variation behavior was similar to that discussed above. However, the intensity of BE emission was stronger than that of the Mn2+ emission from the beginning of the ion exchange reaction, which is different from the above (Figure 2d). These results demonstrate that the intensity of the Mn2+ emission in high Br− content CsPb0.73Cl3:0.25Mn2+ NCs is also related to the Mn2+ substitution ratio. Furthermore, as can be seen in Figure 2e, the PL peak shift behavior of BE and Mn2+ emission is similar to that of as-used CsPb0.73Cl3:0.25Mn2+ as parent NCs; however, the variation of the peak wavelength is minor. The color of the NCs changed with the prolonging reaction time as shown in Figure 3a, which is due to a change in the intensity ratio between Mn2+ and BE emission. Figure 3c shows the intensity ratio of Mn2+ and BE emission collected along with the reaction time. At the first 10 h of the ion exchange reaction, the intensity ratio of Mn2+ and BE emission decreased sharply. With the increasing reaction time, the change of this ratio became slower. The change of the intensity ratio between Mn2+ and BE emissions for the reaction that employed CsPb0.73Cl3:0.25Mn2+ NCs as parent NCs was slow at the beginning of reaction (Figure 2f). These results indicate that the Mn2+ content is the key factor in controlling the rate of divalent cation exchange. Additionally, the Mn2+ content in the parent NCs could also influence the variation range of the CIE chromaticity coordinate, as shown in the inset of Figure 2cf.

The measured PLQY for the selected samples is shown in Figure 3a. The pristine CsPb0.73Cl3:0.25Mn2+ NCs exhibit relatively low PLQY (~7.8%). Notably, after the ion exchange reaction, the PLQY increased to 59.3% (0.05 h product, with the chemical composition of CsPb0.75Cl3:0.25Mn2+). This trend is also in accordance with the result as reported by Klimov et al.21 When such an ion exchange process performed continuously, the PLQY settled to a value ~56%, with a decrease of the Mn2+/Zn2+ ratio. This is in contrast to a previous study that found that the loss of Mn2+ during the anion exchange reaction resulted in a decline of the PLQY of the Mn2+ emission in perovskite NCs.21 To understand the difference, the PL lifetimes of Mn2+ and BE emission of the pristine CsPb0.73Cl3:0.25Mn2+ NCs and the product perovskite NCs were measured, as shown in Figure 3c,d. The Mn2+ emission in pristine and product NCs showed a single exponential decay, which can be fit with a lifetime value of 1.41 ms for the pristine CsPb0.73Cl3:0.25Mn2+ NCs. Upon ion exchange, the lifetime decreased first to 0.43 ms and finally to 0.31 ms. The relationship between PLQY (η) and the observed PL lifetime is given by the following general expression35

$$\eta = \frac{1/\tau_0}{1/\tau_1}$$ \hspace{1cm} (1)

where τ_0 is the radiative lifetime and τ_1 is the observed PL lifetime ($\tau_1 = \tau_{ave}$ in this case). According to this relationship, the shorter the observed PL lifetime, the lower the PLQY is. Therefore, the PLQY of Mn2+ emission decreased with the replacement of Mn2+ by Zn2+ during this ion exchange reaction. However, the changes in the PL lifetime and PLQY of BE emission are different from that of the Mn2+ emission. BE emission showed two decay components for pristine and product NCs. The average lifetime can be determined using $\tau_{ave} = \sum A_i \tau_i^2 / \sum A_i \tau_i$, where A_i and τ_i are amplitude and lifetime of individual components fit with exponentials, respectively. For the pristine CsPb0.73Cl3:0.25Mn2+ NCs reacted with ZnBr2, the τ_{ave} increased from 0.83 ns for the pristine CsPb0.73Cl3:0.25Mn2+ NCs to 5.59 ns for the as-prepared NC product at 0.05 h. This result is mainly due to the replacement of Cl− by Br−. With the increased reaction time, the τ_{ave} further increased to 8.13 ns, which can be attributed to the decrease of the Mn2+ content. The PLQY also increased with the increasing PL lifetime in the CsPbX3 (X = Cl, Br) perovskite system, as reported in previous works.34 At the beginning of the reaction, there is more energy transferred from the perovskite host to the Mn2+ ion, leading to a relatively high PLQY for Mn2+ emission. With the increase of the reaction time, the BE electron–hole recombine preferentially because of the decrease in Mn2+ substitution by Zn2+. Thus, the PLQY of BE emission increased, whereas that of Mn2+ emission decreased, resulting in the settled value of PLQY during the ion exchange reaction.

The pristine NCs and as-obtained NCs after the ion exchange reaction exhibited a similar cubic morphology, as shown in Figure 4a–c. Both high-resolution TEM (inset of Figure 4a–c) and powder XRD (Figure 4d) show that the NCs are highly crystalline. Ion exchange did not change the cubic shape of the pristine CsPb0.75Cl3:0.25Mn2+ NCs (Figure 4a), although after exchanging with ZnBr2 their size increased first, from 10 ± 1 to 12.2 ± 1.4 nm (Figure 4b), whereas continuous exchange reaction led to a slight decrease in size, to 11.8 ± 1.3 nm (Figure 4c). This size variation comes from the substitution of Cl− (99 pm) with larger Br− (114 pm) at the very start of the reaction and Mn2+ ions (97 pm) with smaller Zn2+ ions (74 pm) with a continuous exchange reaction. We also investigated the morphology evolution of the samples with CsPb0.73Cl3:0.08Mn2+ as pristine NCs, as shown in Figures S1 and S2. The trend of morphology evolution is similar to that of the heavily doped NCs, demonstrating the reproducibility of this ion exchange method. The XR D pattern collected on the pristine CsPb0.73Cl3:0.25Mn2+ NCs (Figure 4d) could be indexed as cubic CsPbCl3 ($a = 5.065$ Å, space group Pm3m.
The ion exchange reactions preserved the crystal phase of the NCs (Figure 4d). The XRD patterns of ion exchanged NCs could be ascribed to the same cubic phase. As expected, upon ion exchange, the cell expanded and the peaks shifted to lower angles for the sample obtained after 0.05 h, whereas the incorporation of Zn$^{2+}$ resulted in some shrinking of the cell and the peaks shifted to higher angles for the samples obtained with a longer reaction time (Figure 4e).

The energy level diagram of Mn$^{2+}$-doped CsPb(Cl$_{y}$Br$_{1−y}$)$_3$ QDs is schemed in Figure 5. As is shown, the CsPb(Cl$_{y}$Br$_{1−y}$)$_3$ host absorbs the energy and emits a BE emission via BE electron−hole recombination. As discussed above, the band gap of perovskite QDs is controlled by the ratio of halogen, which results in the tunable of BE emission wavelength. Simultaneously, the doping of Mn$^{2+}$ generates the new recombination pathway of the Mn$^{2+}$-based d−d transition ($^{4}T_{1}−^{6}A_{1}$) based on the exciton-to-Mn$^{2+}$ energy transfer and finally emits the orange emission, as marked by the corresponding emission lines in Figure 5. Therefore, the white light emission perovskite QDs could be obtained by the combination of the blue emission of BE PL and the orange emission from Mn$^{2+}$ PL. Then, a white light LED could be achieved by using the white light emission perovskite QDs as the color conversion materials, as given in the model in Figure 5. That is to say, in the doped perovskite NCs, an expected halide ratio in the product NCs and the Mn$^{2+}$ doping content could be obtained by controlling the amount of the used halide precursor, allowing one to finely tune the emission wavelength, even the white emission.35,36

To start with, the ZnBr$_2$ acts as the bromide precursor to react with the pristine CsPb$_{0.82}$Cl$_3$:0.18Mn$^{2+}$ NCs to produce a series of Mn$^{2+}$-doped perovskite NCs with different Cl$^−$/Br$^−$ ratios in this system. The optical absorption and PL emission spectra of the pristine and these series products are shown in Figure 6a,b. The absorption edge shifts from the about 400 to 460 nm depending on the increasing ZnBr$_2$ contents from 25 to 1250 μL. PL spectra contain a narrow BE emission that is tunable across a wide range depending on different ZnBr$_2$ contents and the fixed Mn$^{2+}$ emission peak. With the increasing amount of the bromide precursor, the BE PL peak shifts monotonically to the red, whereas the Mn$^{2+}$ emission stays nearly constant in energy throughout the exchange process. The relative intensity of Mn$^{2+}$ and BE emission decreased with the increasing bromide content, which is consistent with the discussion above. Therefore, white light can be obtained from the selected sample of CsPb$_{0.76}$Zn$_{0.014}$Cl$_{0.93}$Br$_{2.06}$:0.08Mn$^{2+}$ (with emission peak at 474 nm originated from BE emission and orange light emission peaked at 598 nm from the Mn$^{2+}$ dopant), as also demonstrated in the previous model in Figure 5. Thus, a prototype white light LED device has been fabricated.

Figure 6. Optical absorption (a) and PL (b) spectra of NCs with different halide ratios. (c) PL spectrum of the LED fabricated from CsPb$_{0.76}$Zn$_{0.014}$Cl$_{0.93}$Br$_{2.06}$:0.08Mn$^{2+}$ NCs and the 365 nm UV LED chip, inset: photograph of the corresponding LED device, and (d) CIE chromaticity coordinates of white LED.
by using a 365 nm UV LED chip and the CsPb0.76Zn0.014Cl0.93Br2.06:0.08Mn2+ NCs. The LED device exhibits bright white light emission with the color coordinate of (0.352, 0.302), as shown in Figure 6c, and a photograph of the corresponding device is shown in the inset. The color render index values of the fabricated white LEDs are not high (42 for the CsPb0.76Zn0.014Cl0.93Br2.06:0.08Mn2+ NCs) because of the strong blue emission. Figure 6d demonstrated the CIE chromaticity coordinate of the as-fabricated white LEDs lamp, suggesting the realization of the high quality white light by such a way.

CONCLUSION

In summary, strong Mn2+ emission in high Br− content Cs(Pb1−x−yZnx)(Cl1−yBry)xMn2+y−x NCs was first realized through the ion exchange reaction occurring between ZnBr2 and preformed CsPb1−x−yClxMn2+y−x NCs, where the rate of anion exchange is much faster than that of cation exchange. The Mn2+ substitution ratio reached 22% in the exchanged CsPb0.76Zn0.014Cl0.93Br2.06:0.08Mn2+ NCs, which could not be obtained by the direct synthesis method or halogen exchange method used in previous work. By controlling the ion exchange reaction time, the intensity of Mn2+ emission can be varied at all through the replacement of Mn2+ by Zn2+ and thereby the intensity ratio between Mn2+ and BE emission. As a result, white light-emitting perovskite NCs could be obtained by this RIEE mechanism and be used as new color conversion materials in a prototype LED device based on the commercially available 365 nm LED chip.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.7b18750.

HRTEM image and TEM image of pristine CsPb0.92Cl3:0.08Mn2+ (PDF)

AUTHOR INFORMATION

*E-mail: xiazg@ustb.edu.cn.

ORCID

Zhiguo Xia: 0000-0002-9670-3233
Caofeng Pan: 0000-0001-6327-9692
Yue Gong: 0000-0002-5764-1117
Lin Gu: 0000-0002-7504-031X
Quanlin Liu: 0000-0003-3533-7140
Jin Z. Zhang: 0000-0003-3437-912X

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the support from National Natural Science Foundation of China (nos. 51722202, 91622125, and 51577203) and Natural Science Foundations of Beijing (2172036).

REFERENCES

(4) van der Stam, W.; Gruchies, J. J.; Altantzis, T.; van den Bos, K. H. W.; Meeldijk, J. D.; Van Aert, S.; Bals, S.; Vanmaekelbergh, D.; de Mello Donega, C. Highly Emissive Divalent Ion Doped Colloidal CsPb0.76Zn0.014Cl0.93Br2.06:0.08Mn2+ Perovskite Nanocrystals through Cation Exchange. *J. Am. Chem. Soc.* 2017, 139, 4087–4097.

